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Volume transforms for the collision of 3D crystals are calculated for the case where the crystal centres 
are distributed randomly in a 2D plane. The transforms connect the volumes of collided crystals with 
the volumes the crystals would have had if they had not collided. The results obtained are consistent 
with the known mathematical bounds on the problem, and they also connect with nearest-neighbour 
theory in 2D. Because the transforms are calculated on the basis of 'almost catastrophic' collisions, it 
is not necessary to explicitly consider the detailed mechanisms responsible for the termination of the 
crystal growth processes. 

1. Introduction 

It is known that many polycrystal trims are formed 
by a process loosely described as three-dimensional 
nucleation and growth [ 1 ]. Unfortunately, 
adequate theoretical models of this process have 
not so far been developed despite the fact that the 
mathematical and physical bounds on the problem 
are well known. The greatest stumbling block so 
far has been the choice of an appropriate 'volume 
transformation' which would account for inter- 
crystal collisions in a proper way. The purpose of 
this paper is to suggest such a transformation. 

One of the principal difficulties in understand- 
ing the volume transformation lies in relating 
the spatial distribution of the crystal centres to 
their subsequent growth (Fig. 1). Although;he 
crystal centres may be assumed to be distributed 
randomly in two dimensions across the substrate 
surface, they are obviously not distributed ran- 
domly in three-dimensional space [2]. Nevertheless, 
crystal growth extends into one-half of the third 
dimension (the vertical axis in Fig. 1) while at the 
same time growth 'into' the substrate is forbidden. 
As a matter of  fact the overall process is better 
described as '2�89 nucleation and growth rather 

than '3D' nucleation and growth as it is usually 
calledt. 

In strictly n-dimensional crystal growth prob- 
lems (integer n) the required coverage/volume 
transformations are calculated using arguments in 
geometrical probability. Under appropriate limits 
(discussed elsewhere [4]) these transformations 
can be described by the well-known Kolmogoroff- 
Avrami limiting law 

(ART) n = 1 -- exp {-- (Xx) n } (1) 

where XT is a transformed normalized linear 
measure of the crystals, X x is the untransformed 
normalized linear measure of the crystals, and n is 
the dimensionality of the growth process. E.g., in 
two dimensions n = 2 and (Xx) 2 = S/STota b 
where S is the basal area of the crystals and STota 1 
is the total available area of the substrate. 

Because in '2�89 nucleation and growth the 
crystals are distributed in 2D but grow in '2�89 we 
cannot apply Equation 1 directly to obtain the 
appropriate volume transformation. Therefore, 
what we wish to find is an expression analagous to 
Equation 1 which will be applicable to the '2�89 
case described above. Before doing this we briefly 
summarize some of the general features of the 
overall problem. 

~ Proper 3D nucleation and growth occurs throughout 
spatial volumes and consists of both nucleation and 2. Some general features of the problem 
growth, each of which occurs in full 3D. This type of 
behaviour is widely observed in transformations in metals, 
alloys, glasses etc., and should not be confused with the 
electrochemical formation of films and the like [3]. 
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Any model o f '  1 , 2~D nucleation should be able to 
explain the following experimental facts: 
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Fig. 1. The geometrical situation. 

(a) The potentiostatic i-t transient must be of 
the correct shape, e.g., of the form reported for 
Hg/ngO [51 . 

(b) The charge contained in the potentiostatic 
i- t  transients must be a decreasing function of 

[51. 
(c) The gradient of log (ip) as a function of 

log(v) in LPS must be a constant between 0 and 
116]. 
There are also the following mathematical bounds: 

(d) In common with other 'interfacial' models 
of crystal growth, the rate-determining step should 
be at the edge of the crystals [1]. 

(e) For sufficiently small volumes of crystal the 
solution obtained, taking collision into account, 
must asymptotically approach that obtained 
neglecting inter-crystal collisions as t ~ 0. 

(f) At im in the potentiostatic transients (i.e., 
in the steady state) the following relation must 
hold 

l <  4 
im ec rpl_~t ] (2) 

where r i is a specific rate constant describing the 
immigration of 'growth sites' into the system, r t is 
a specific rate constant describing the termination 
('death') of sites in the system, and rp is a specific 
rate constant describing the propagation of sites 
[7]. 

Unfortunately, bound (a)-(f) are not in them- 
selves sufficient to uniquely define the non-steady- 
state problem. This is because it is not clear why a 
'21D' crystal growth process should ever terminate. 
Thus, although the lateral spreading of the crystals 
is ultimately inhibited by intercrystal collisions, 
the tops of the crystals are not inhibited in the 
same way and hence should continue to grow 
indefmitely. Since this is not usually found experi- 

mentally we are faced with the problem of explain- 
ing this behaviour. In the only successful model to 
date this was achieved by relaxing criterion (d) so 
that growth eventually became limited by diffusion 
of reactant through patches of uncovered surface 
[5]. However, in this model only the vertical 
spreading fell under diffusion control whereas the 
rates of lateral spreading remained under 'inter- 
facial' control. This is a physically unreasonable 
proposition in as much as a diffusion-controlled 
growth might be expected to exhibit hemispherical- 
like diffusion zones surrounding the entire crystal, 
in which case the rates of lateral and vertical 
spreading should both be controlled by the mass 
transport process. Alternatively, if diffusion were 
truly concentrated at the top of the crystal, a den- 
dritic growth form should result. Thus, although 
the diffusional model [5] exhibits the correct 
bounds as listed earlier its physical basis is none- 
theless questionable. 

In what follows we propose an alternative 
model in which it is possible to dispense with 
mass transport control to growth sites as a rate- 
determining step, although mass transport can be 
crudely incorporated. In this model we shall 
assume that crystals grow in a shape-preserving 
way, that is, the rates of lateral and vertical spread- 
ing will be assumed to be locked together via the 
crystallography of the growing crystal. In such a 
model the rate-determining step effectively 
becomes the spreading of the basal plane of the 
crystal. Growth into the third dimension can then 
be regarded as fast but constrained by the crystal- 
lography of the growth shape. 

3. Formulation of the volume transform for 
'instantaneous' nucleation 

Let us denote all transformed quantities (i.e., 
those quantities including the effects of the 
collision of crystals) by subscript T. Let us denote 
all untransformed quantities (i.e., those describing 
the crystals but neglecting collisions) by subscript 
X. Considering only the basal area of crystals we 
have an essentially 2D problem and hence, using 
the Kolmogoroff-Avrami limiting law, 

0T = 1 -- exp (-- 0x) (3) 

where 0 denotes the normalized surface coverage 
of the electrode by the basal planes of the crystals. 
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In terms of  one centre this equation can be written 

P 1 ST = 1 -- exp ( - -  p 1 Sx)  (4) 

where 1S is the real mean basal area of  one crystal, 
and p is the density of  crystal growth centres in 
the plane. In order to transform this equation into 
one in Vwe need to relate 1ST to 1VT and we 
need to relate a Sx to 1Vx. 

3.1. Relation between 1Sx and i V  x 

This relation can be obtained rather trivially. We 
have 

fo' Jo' xVx ~ k~('r)dz x k~,0-)dr x kz( 'r)dr 

(5) 

and 

1Sx cc kx(r )dr  x ky0-)d~" (6) 

where k is a velocity constant for the spreading of  
crystal in some linear direction. Setting k x = ky = 
kz (symmetric growth) shows 

1Vx = 0d(iSx) 3/2 (7) 

where o~ is a geometrical constant. 

3.2. Relation between 1ST and 1Vr: hemispherical 
growth 

This is a complex relation which depends on the 
geometry of  the individual crystals. First we shah 
consider hemispherical crystal growth. Since a 
complete analysis involving all the geometrical 
details of  the randomly distributed crystals, plus 
their interactions, would be well-nigh impossible 
to obtain, we consider instead two hemispheres on 
an extensive plane and let the distance between 
their centres O102 be two units. Under our 
assumption that growth is 'shape-preserving', we 
can regard the collision o f  the two hemispheres as 
geometrically equivalent to an 'interpenetration', 
and hence the mean volume of  one hemisphere as 
it grows can be obtained by simple mensuration. 
The basal areas can similarly be obtained. We have 

1V~ 3 [2 \2/3 
- [~-) rr -u3 r~< 1 (8) 
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Fig. 2. Behaviour of two intersecting hemispheres as a 
function of their radius r. The distance between the 
centres of the hemispheres is assumed to be 2r. 

1 3 + 2 _  
1ST ~Trr 2~+ [(r 2 -  1) ' /2+ r2sin-'(1/r)] 

r >  1 (9) 

'3 (? )2 ,3  
1ST ~ 71 "-1/3 r -+ ~ (10) 

This function is illustrated in Fig. 2. It can be 
seen that for intersecting hemispheres the ratio 
(x VT)2/3/(1 ST) is only a slowly-varying function of  r 
and hence we can approximate Equations 8-10  by 
the expression 

1 VT = ~(1ST) y2 (11) 

where/3 is a constant. Strictly speaking this 
approximation has only been shown to hold for 
the considered pair-wise interactions. Now, since it 
is known that for growth to be entirely inhibited 
by collisions requires on average six intercrystal 
collisions [7] then obviously Equations 11 will 
become increasingly in error as more collisions 
occur. This is because Equation 11 underestimates 
x VT at S -+ 1. However, we do not anticipate that 
this error will be large enough to invalidate 
Equation 11 up to ~ 80% coverage since later 



4 S. FLETCHER AND D. B. MATTHEWS 

collisions do not allow the crystals to 'inter- 
penetrate' too deeply. We also note in passing that 
an equation identical to Equation 11 can be 
obtained if a growth mode of right circular cones 
is assumed, in which case similar considerations 
apply. 

Using Equation 11 with Equation 7 now allows 
us to evaluate the volume transformation. 

3.3. Solution to the volume tranformation: 
hemispherical grow th 

Substituting Equations 11 and 7 back into 
Equation 4 gives the result 

1 

in which 1VT, 1 Vx are real, not normalized, 
volumes. By rearrangement 

1VT - 03/2 

Now plV w = V~M where V~: is the total real 
volume. Calling V~/A = VT, where V T is the real 
volume per unit area of substrate, we finally 
obtain 

VT = /~p-1/2 1 -- exp -- p 

3.4. Solution to the volume transformation: 
prismatic growth 

(14) 

The case of  a growth mode of crystals as vertically- 
oriented prisms (Fig. 1) is an interesting one to 
consider because two limits on the volume trans- 
formation can be obtained rather easily by dimen- 
sional arguments. In the early stages of  growth, in 
which intercrystal collision is statistically improb- 
able, the same relation between 1Vx and 1Sx is 
obtained as was found in the hemispherical case, 

1VX cr (1Sx) 3/2. (15) 

Now, in the early stages of intercrystal collision 
this expression can be extended to include a result 
on t VT provided 'interpenetration' is not too 
developed. Thus we assume 

IVT ~ (1ST) ~2 (16) 

Fig. 3. A crude attempt to illustrate the fact that the 
thickness of a polycrystal layer is directly proportional to 
the mean centre-to-centre nearest-neighbour distance. 

which is the same result as in the hemispherical 
case. In practice this limit would be observed 
provided growth occurred for a substantial period 
of time without overlap, whereupon growth would 
be rapidly inhibited by a fast sequence of collisions 
at the periphery of the crystal. Thus crystal death 
would be 'almost catastrophic'. The growth pro- 
cess in this limit is dominated by collision-free 
growth prior to the actual occurrence of collisions, 
and hence we can expect that the physical struc- 
ture of the crystal layer which results will be 
similar to that obtained by a random packing. We 
shall take this point up in a later section. 

Another interesting limiting form of growth 
occurs if it is assumed that the prismatic crystals 
can 'interpenetrate' indefinitely, so that 'passi- 
ration' never occurs and hence the crystal layer 
thickens as a function of time. This is the 
'opposite' limit to the one described above in as 
much as the early stages of growth are unimport- 
ant and 'interpenetration' is highly developed. In 
this case we have the simple relationship for 1 VT 

1VT -- 1ST (17) 
1Vx :Sx" 

Substitution of Equations 17 and 15 into 
Equation 4 together with the fact that V T = p 1 VT 
yields the expression 
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Another way of viewing the limits described by 
Equations 16 and 17 is to write a general 
expression for 1 Vw, of the type 

1 VT = 1ST X h- (19) 

where/~ is defined to be the mean height of the 
transformed crystals. By the 'geometry-conserving' 
hypothesis we have immediately 

/~ = X/I ST (20) 

and substitution of Equation 20 in 19 leads 
immediately to Equation 16. 

On the other hand if h is not bounded by 1 ST 
but instead can hacrease indefinitely then 

/~ = x / ,Sx  (21) 

and substitution of this result in Equation 19 gives 

1VT ~ aSTx/1S x (22) 

which indicates that 

tVw 1Swx/LSx tST 
- ( 2 3 )  

1 V  x - -  (1 SX)3/2 l S x  

which is identical to Equation 17. 
It is important to note that Equations 20 and 

21 really represent rather extreme limiting types 
of behaviour, and they are obtained here only 
because they are mathematically tractable. In 
reality '2�89 crystal growth is likely to fall some- 
where between these limits and indeed it seems 
probable that the volume transformation for any 
specified system may well be unique to that 
system. This could easily be the case because the 
number of variables controlling the geometry, 
orientation, growth rates and spatial distributions 
of crystals in such a system is so vast. To properly 
consider these 'intermediate' cases we would have 
to quantify how the volume of crystals varied 
between the 1st collision and the nth (terminal) 
collision, and then sum these results over the 
entire 2D plane. 

4. Comparison of the volume transformation with 
nearest-neighbour theory 

So far we have obtained two volume transfor- 
mations depending on whether the ' 1 , 2~D crystal- 
line film passivates the electrode (Equation 14) or 
continues to thicken indefinitely (Equation 18). 
The passivafing case was obtained under the 

assumption that 

, VT ~ (1 ST) 3/2 (24) 

and we have already referred to this as a 'geometry- 
conserving' solution. It was also suggested that this 
type of intercrystal collision should have features 
in common with random packing. Here we take up 
this point in more detail by comparing the result- 
in volume transformation with nearest-neighbour 
theory in 2D. 

Let w(r)dr be the probability that the nearest- 
neighbour to a growth centre chosen at random 
occurs between r and (r + dr). This probability 
must equal the probability that no growth centres 
exist interior to r, times the probability that a 
growth centre does exist in the circular region 
between r and (r + dr). Let the density of points 
in the 2D plane of the substrate be p. Then 

w(r)dr = P o x  P1 (25) 
O-->r r-+ (r+dr) 

f; = [1 -- w(r)drl 27rrodr. (26) 

After a little rearrangement, and using the fact 
that w(r) ~ 2rrrO as r ~ 0, the distribution of 
nearest-neighbours is found to be 

w(r) = 27rrp exp (-- rrr2p). (27) 

The 'average distance' between nearest-neighbour 
growth centres D is thus 

D = ~ r[w(r)] dr (28) 
0 

and replacing the sum by art integral, and solving, 
gives 

(2D) = p-U2 (29) 

with variance 

((2D) 2) -- ((2D)) 2 = (7rp)-1(4 - -  r 0. ( 30 )  

Comparing Equation 29 with Equation 14 shows 
that after completion of the crystal growth in the 
'passivating' case the mean thickness of the layer is 
directly proportional to the mean centre-to-centre 
nearest.neighbour distance. This is clearly a physi- 
cally reasonable conclusion; Fig. 3 is intended to 
illustrate the fact. 

It follows that the simple relation between 
Equations 29 and 14, i.e., between nearest- 
neighbour distance and layer thickness, might be 
used as an experimental test of the suggested 
model. 
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5. Calculation of the volume transformation for 
progressive nucleation 

Using the Kolmogoroff-Avrami limiting law we 
have for the basal area of  crystals 

0T = 1 - -exp -- A x ( t ) l O x ( r - - t ) d t  

(31) 

where A x ( t  ) is the appearance rate of crystals 
neglecting collisions. An important point to note 
here is that even after passivation (100% coverage 
of electrodes by basal areas) the number of nuclei 
N x continues to increase without bound according 
to 

Nx = J r  A x ( t ) d t .  (32) 

These nuclei do not manifest themselves in reality, 
however, because they nucleate 'inside' pre- 
existing crystal (i.e., they are so-called 'virtual' 
nuclei). This complicates the model, because our 
next step is to suppose that the thickness of the 
passivating layer varies as the mean of the crystal 
centre nearest-neighbour distances, and if we use 
Equation 32 then the layer thickness ~ 0. To 
resolve this difficulty we need to consider only 
those nuclei which actually appear on free surface, 
so Equation 32 needs to be replaced by the more 
complex expression 

N T Ax(t)[1 -- 0T(t)] dt. (33) 

Proceeding as in the 'instantaneous' case, we set 

1 Vx cc (1Sx) 3/2 (34) 

and 
1VT cx (1ST) 3/2. (35) 

Now inserting Equations 33-35 into Equation 31 we~176 Ij: }1 
VT cx Ax(t)[1 -- 0T(t)] at 

{ 11 X 1 - - exp  A x ( t ) l O x ( r - - t ) d t  
(36) 

which is the appropriate volume transformation 
for progressive nucleation. 
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